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Abstract

The purpose of this paper is to formulate optimal sequential rules for mastery tests. The

framework for the approach is derived from empirical Bayesian decision theory. Both a

threshold and linear loss structure are considered. The binomial probability distribution is

adopted as the psychometric model involved. Conditions sufficient for sequentially setting

optimal cutting scores are presented. Optimal sequential rules will be derived for the case of a

beta distribution representing prior true level of functioning. An empirical example of

sequential mastery testing for concept-learning in medicine concludes the paper.
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Bayesian Decision Theory - 2

Applications of Bayesian Decision Theory to Sequential Mastery Testing

In a fixed-length mastery test, the decision is to classify students as either a master or a

nonmaster. During the last two decades, the fixed-length mastery problem has been studied

extensively by many researchers (e.g., Cronbach & Gleser, 1965; Davis et al., 1973; De

Gruijter & Hambleton, 1984; Hambleton & Novick, 1973; Huynh, 1976, 1980; Swaminathan

et al., 1975; van der Linden, 1980, 1990; van der Linden & Mellenbergh, 1977; Wilcox,

1977). Most of these authors derived, analytically or numerically, optimal rules by applying

(empirical) Bayesian decision theory (e.g., De Groot, 1970; Lehmann, 1959; Lindgren, 1976)

to this problem. The application of (empirical) Bayesian methods to decision making consists

of two basic elements: A psychometric model relating observed test scores and student's true

level of functioning to each other, and a loss structure evaluating the total costs and benefits of

all possible decision outcomes. Optimal rules are derived by minimizing the posterior

expected loss.

Beside the fixed-length mastery problem, attention has also been paid to the variable-

length mastery problem. In this type of problem the decision is to classify students as a master,

a nonmaster, or present another item. The main goal of a variable-length mastery test is to

prOvide shorter tests for students who have clearly attained a certain level of mastery (or

clearly nonmastery) and longer tests for those students for whom the mastery decision is not

as clear-cut (Lewis & Sheehan, 1990). In case the items are randomly selected, the variable-

length mastery problem is also known as a sequential or multistage mastery problem. If a

computer is used for administering and scoring the items (e.g., Lewis & Sheehan, 1990;

Sheehan & Lewis, 1992), and the optimal rule is determined using sequential decision theory,

the mastery test is called a computerized mastery test (CMT).

One of the earliest sequential mastery tests was designed by Ferguson (1969a, 1969b)

using Wald's sequential probability ratio test (SPRT). In Ferguson's approach, students'

responses to items are assumed to follow a binomial probability distribution. The binomial

model assumes that, given the true level of functioning, the probability to answer the item

correctly is equal for all items in the pool, or that items are sampled at random. Using item

response theory (IRI') models, Reckase (1983) and Kingsbury and Weiss (1983) proposed

alternative sequential mastery testing procedures within an SPRT-framework. In both

procedures, as opposed to Ferguson's approach, items are not assumed to have equal difficulty

but are allowed to vary in difficulty and discrimination. In addition, the next item to be
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Bayesian Decision Theory 3

presented to the student is not selected randomly but is based on the principle of maximizing

the amount of information. Hence, the item selection procedures proposed by Reckase (1983)

and Kingsbury and Weiss (1983) are adaptive instead of random (also see Spray & Reckase,

1996).

In the Lewis and Sheehan (1990) model, Bayesian theory is used to determine the

optimal sequential number of equivalent testlets (i.e., short blocks of parallel items) to be

randomly administered to the student. As in Reckase (1983) and Kingsbury and Weiss (1983),

the conditional probability of a correct response, given the true level of functioning, is

modeled using IRT. A threshold loss function is assumed from which the posterior expected

losses associated with the mastery and nonmastery decisions can be calculated at each stage of

sampling. The posterior expected loss associated with continuing sampling is determined

considering all possible decision outcomes of future randomly presented items by backward

induction. The optimal sequential decision rule is now found by selecting the action (i.e.,

mastery, nonmastery, or to continue sampling) that minimizes posterior expected loss at each

stage of sampling. Doing so, as indicated by Lewis and Sheehan (1990), the action selected at

each stage of sampling is optimal with respect to the entire sequential mastery testing

procedure.

The purpose of the present paper is to derive optimal rules for sequential mastery tests.

As in the Lewis and Sheehan model, optimal sequential rules are determined using Bayesian

decision theory. Our approach differs from Lewis and Sheehan, however, in the following five

respects. First, as in Ferguson's approach, for the conditional probability of a correct response

given the true level of functioning (i.e., the psychometric model), the binomial instead of an

IRT model is considered. Two, in addition to threshold loss, optimal sequential rules are also

derived for linear loss. Three, conditions sufficient for sequentially setting optimal cutting

scores are presented. Four, optimal sequential rules will be derived when prior true level of

functioning is determined through an analysis of empirical data (i.e., empirical Bayesian

approach) instead of through a subjective assessment. It will be assumed in the present paper

that prior true level of functioning can be characterized by a beta distribution, which will be

examined against the data in the empirical example. Finally, four instead of three possible

actions are distinguished, namely the action administering one more randomly selected item

and the three classification actions mastery, partial mastery, and nonmastery. The paper

concludes with an empirical example of a computerized mastery test for concept-learning in

medicine.
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Bayesian Decision Theory - 4

The Sequential Four-Action Mastery Problem

In the following, a sequential four-action mastery test is supposed to have a maximum length

of n (n 1). Following Ferguson (1969a, 1969b), a maximum test length is specified for those

students for whom it is very difficult to classify them as a master, partial master, or

nonmaster. Let the observed item response at each stage of sampling k (1 k n) for a

randomly sampled student be denoted by a discrete random variable Xk, with realization xk.

The observed response variable Xk takes the value 0 for a correct response and 1 for an

incorrect response to the kth item. The variables X1,...,Xk are assumed to be independent and

identically distributed for each value of k (1 5 k n). Let Sk = X1 +...+ Xk (1 k n) be the

observed number-correct score variable, with realization sk = xi +...+ xk. (0 5 sk S k).

Furthermore, due to measurement and sampling error, the sequential four-action mastery test

is assumed not to be a perfect indicator of student's true performance. Therefore, let student's

true level of functioning t E [0,1] at each stage of sampling k (1 k 5 n) be denoted by a

continuous random variable T.

Suppose X1 = xl,...,Xk = xk has been observed. Then the two fundamental elements of

the application of Bayesian methods to sequential decision making discussed earlier can be

formulated as follows: A loss function describing the loss 1(ai(x1,...,xk),t) incurred when action

ai(xl,...,xk) is taken for the student whose true level of functioning is t, and a psychometric

model relating observed number-correct score sk to student's true level of functioning t at each

stage of sampling k (1 k n). In fact, it is the unreliability of the test that opens the

possibility of applying (sequential) Bayesian methods to the problem of determining the

optimal number of items (Hambleton & Novick, 1973).

In the sequential four-action mastery problem, given Xi = x1,...,Xk = xk, the following

four actions are available to the decision-maker at each stage of sampling k (1 k < n): First,

declare nonmastery to a student, al(xl,...,xk), if his/her number-correct score sk is equal to or

below a certain cutting score sci(k) on the observed number-correct score scale Sk. Second,

declare partial mastery to a student, a2(x1,...,xk), if his/her number-correct score sk exceeds

scl(k) but is below a certain cutting score sc2(k) on Sk, where scl(k) < sc2(k). Three, declare

mastery to a student, a3(xl,...,xk), if his/her number-correct score sk is equal to or exceeds

sc2(k). Fourth, continue sampling, a4(xl,...,xk), if the posterior expected loss associated with

administering one more random item is minimal. For the final stage of sampling, n, only the
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Bayesian Decision Theory 5

three classification actions nonmastery, partial mastery, and mastery are available to the
decision-maker.

It is important to notice that, linking up with common practice in criterion-referenced

testing, the optimal sequential rules w.r.t. the three mastery classification decisions are

assumed to have monotone forms; that is, rules in the form of cutting scores sci(k) and sc2(k).

Conditions sufficient for optimal sequential rules to be monotone are given lateron.

Let the criteria levels tc, and tc2 (0 5_ to < tc2 ) represent the highest and lowest true

level of functioning at which a student will be considered a true nonmaster and a true master,

respectively. Furthermore, a student will be considered a partial true master if his/her true

level of functioning exceeds tc, but is below tc2. The two criteria levels tc1 and tc2 must be

specified in advance by the decision-maker (e.g., Angoff, 1971; Ebel, 1972; Nedelsky, 1954).

Given the values of the criteria levels to and tc2 on T, the sequential four-action mastery

problem can now be stated at each stage of sampling k (1 5_ k < n) as choosing values of scl(k)

and sc2(k) or continue sampling such that the posterior expected loss is minimal. For the final

stage of sampling, n, our sequential mastery problem reduces to choosing values of sci(n) and

sc2(n) such that the posterior expected loss is minimal.

Loss Structure

Generally speaking, a loss function evaluates the total costs and benefits of all possible

decision outcomes for a student whose true level of functioning is t. These costs may concern

all relevant psychological, social, and economic consequences which the decision brings along

(e.g., extra computer time associated with presenting randomly additional items). The

Bayesian approach allows the decision-maker to incorporate into the decision process the

costs of misclassifications (i.e., students for whom the wrong decision is made).

In this section, as in the Lewis and Sheehan model, first the well-known threshold loss

function will be discussed. Next, it is argued that in many situations the linear loss structure is

a more realistic representation of the losses actually incurred.

Threshold Loss

The choice of this function implies that the costs and benefits involved can be summarized by

possibly different constants for each possible decision outcome. Although this function may

be less realistic in some applications, it has been studied extensively in the psychometric
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Bayesian Decision Theory 6

literature, in particularly in the (sequential) mastery testing literature (e.g., Ben-Shakhar &

Beller, 1983; Chuang et al., 1981; Davis et al. 1973; Hambleton & Novick, 1973; Huynh,

1976; Lewis & Sheehan, 1990; Novick & Lewis, 1974; Raju et al, 1991; Swaminathan et al.,

1975).

Following Lewis and Sheehan (1990), a threshold loss function for our sequential

mastery problem can be formulated as a natural extension of the one for the standard fixed-

length two-action problem at each stage of sampling k (1 k n) as follows:

Table I. Table for threshold loss function at stage k (1 k n) of sampling.

True Level

Action
T 5. tcl tci < T < tc2 T ?.. tc,

al(xl, ..., xk) ke 112+ ke 113 + ke

a2(x 1, ..., xk) 121 + ke ke 123 + ke

a3(xl, ..., xk) 131 + ke 132 + ke ke

Just as in the Lewis and Sheehan model, the value e represents the costs of

administering one random item. For the sake of simplicity, again following Lewis and

Sheehan, the costs of administering one random item are assumed to be equal for each

decision outcome as well as for each sampling occasion. Of course, these two assumptions

can be relaxed in specific sequential mastery testing applications.

When optimizing the decision rule, a loss function needs to be determined only up to a

positive multiplicative constant and an additive constant (e.g., Luce & Raiffa, 1957).

Therefore, assuming the losses 111, 122, and 133 associated with the correct decision outcomes

are equal and take the smallest values, the threshold loss function in Table 1 was rescaled in

such a way that 111, 122, and 133 were equal to zero. Consequently, the rescaled losses lij (i,j =

1,2,3; i j) associated with the incorrect decisions must take positive values.

Furthermore, it follows immediately from the way actions ai(xi,...,xk) (i = 1,2,3) were

defined that action al(xl,...,xk) is most appropriate when t is small, whereas action a2(xl,...,xk)

is most appropriate when t takes intermediate values, and action a3(xi,...,xk) is most

appropriate when t is large. As a result, the loss functions associated with actions al(xl,...,xk)

and a3(xl,...,xk) must be nondecreasing and nonincreasing in t, respectively. As far as the loss

function associated with action a2(xl,...,xk) (i.e., partial mastery) is concerned, it cannot be

9
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Bayesian Decision Theory 7

determined beforehand whether the loss for a student whose true level of functioning is below

tci (i.e., 121) is equal to, larger than, or smaller than the loss for a student whose true level of

functioning exceeds tc2 (i.e., 123). We only know that the loss associated with the correct

partial mastery decision, 122, must be smallest.

The loss parameters lij (i = 1,2,3; i # j) have to be empirically assessed. For assessing

loss functions empirically, most texts on decision theory propose lottery methods (e.g., Luce

& Raiffa, 1957, Chap.2). In general, these methods use the notions of desirability of outcomes

to scale the consequences of each pair of actions and true level of functioning. It may be noted

that, in addition to lottery methods, other psychological scaling methods can be used for

assessing empirically loss parameters as well. For instance, van der Gaag, Mellenbergh, and

van den Brink (1988), van der Gaag (1990), and Vrijhof, Mellenbergh, and van den Brink

(1983) empirically assessed loss functions using Bechtel's preference method (Bechtel, 1976)

and Comrey's constant sum method (Torgerson, 1958).

Linear Loss

An obvious disadvantage of the threshold loss function is that it assumes that, for instance, the

same constant loss holds for all 'masters' whose true level of functioning is to the right of tc2,

no matter how large their distance from tc2. It seems more realistic to suppose that for true

masters the loss is a monotonically decreasing function of t (van der Linden, 1980).

Moreover, the threshold loss function is discontinuous; at the criteria levels to and tc2

this function "jumps" from one constant value to another. This sudden change seems

unrealistic in many real-life decision making situations. In the neighborhood of these points,

the losses for correct and incorrect decisions should change smoothly rather than abruptly

(Davis et al., 1973).

To overcome these shortcomings, van der Linden and Mellenbergh (1977) proposed a

continuous loss function for the fixed-length two-action mastery problem which is a linear

function of student's true level of functioning t (see also van der Linden & Vos, 1996; Vos,

1990, 1991, 1995, 1997, 1998). For our sequential mastery problem, their linear loss function

can be restated at each stage of sampling k (1 k n) as follows (see also Davis et al., 1973):

Ibi(tto)+ke1(a,(xl,...,xk),t)= b2(tte2)+ke
b30c2 0+ ke

for i = I
for i = 2
for i = 3,

(1)
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where (131-b2) > 0 (i = 1,2,3).

At each stage of sampling k (1 k n), the above defined function consists for each

action ai(xi,...,xk) (i = 1,2,3) of a constant term and a term proportional to the difference

between the true level of functioning t and the specified criterion level tc, or tc2. Analogous to

the threshold loss function, the constant amounts of loss, e, associated with administering one

random item are assumed to be equal for each action as well as for each sampling occasion.

The condition 131, b2, b3 > 0 is equivalent to the statement that for action al(xl,...,xk) and

a2(xi,...,xk), loss is assumed to be a strictly increasing function of t whereas loss for action

a3(x1,...,xk) is assumed to be strictly decreasing in t. Furthermore, the condition (b1 -b2) > 0

states that the loss for action al(xl,...,xk) increases more quickly in t than for action

a2(x ,...,xk).

It should be noted that the linear loss function seems to be a realistic representation of

the losses actually incurred in many decision making situations. In a recent empirical study,

van der Gaag (1990) showed that for various real-life fixed-length mastery decisions in

psychology and education the loss structures can be approximated satisfactory by linear

functions.

The loss parameters b. (i = 1,2,3) have to be assessed empirically again.

Binomial Distribution as a Psychometric Model

To determine the optimal sequential number of items, a psychometric model to specify the

statistical relation between the observed number-correct score and student's true level of

functioning at each stage of sampling is needed. In the present paper, following Ferguson

(1969a, 1969b), the well-known binomial model will be adopted.

As indicated by van den Brink (1982), when tests are assumed sampled from item

domains, as in our sequential four-action mastery problem, the well-known binomial model is

a natural choice for estimating the distribution of student's number-correct score sk and

making classification decisions (mastery, partial mastery, nonmastery). The binomial model

assumes that the probability function relating the observed number-correct score sk (0 5_ sk

k) to student's true level of functioning t, f(sk I t), at stage k can be written as follows:

f (sk It) (k
sk

)tsk k-sk (2)
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Conditions Sufficient for Sequentially Setting Cutting Scores

As far as the three mastery classification decisions concern, as noted earlier, we confine

ourselves in this paper to monotone rules. The restriction to monotone rules, however, is

correct only if it can be proven that for any nonmonotone rule for the problem at hand there is

a monotone rule with at least the same value on the criterion of optimality used (Ferguson,

1967, p.55). In a Bayesian fashion, the posterior expected loss is taken as the criterion of

optimality.

The posterior expected loss for continuing sampling is determined by averaging the

posterior expected loss associated with each of the possible future decision outcomes relative

to the probability of observing those outcomes (Lewis & Sheehan, 1990). Therefore, it follows

immediately that the conditions sufficient for setting cutting scores for the fixed-length three-

action mastery problem at each stage of sampling, are also sufficient for the sequential four-

action mastery problem. Generally, conditions sufficient for setting cutting scores for the

fixed-length multiple-decision problem are given in Ferguson (1967, p.286).

First, the probability model relating observed number-correct score sk to student's true

level of functioning t, fisk I 0, must have a monotone likelihood ratio (MLR); that is, it is

required that for any t1 > t2, the likelihood ratio fisk I tyfisk I t2) is a nondecreasing function of

sk. MLR implies that a high true level of functioning tends to coincide with a high observed

number-correct score. Second, the condition of monotone loss must hold; that is, there must

be an ordering of the actions such that for each pair of adjacent actions the loss functions have

at most one point in which the difference between the losses changes sign.

The condition of MLR holds for the binomial distribution, since this distribution

belongs to the one-parameter exponential family which is well known to have MLR (e.g.,

Hogg & Craig, 1978). Generally, as shown by Gray (1988), for f(sk I t) to have MLR it is

sufficient to show that the items have nondecreasing item characteristic functions.

Assuming the indices reflect the proper ordening of the actions, it follows from Table

1 that for threshold loss the condition of monotone loss is satisfied if at each stage of sampling

k (1 <_k <_n):

(113+ke) - (123+ke) ?_ (112+ke) ke ke (1214-ke),

(123+ke) - ke ke - (132+ke) (121+ke) - (131+ke). (3)

12



or, equivalently,

113 - 123 > 112 ?_ - 1 21,

1 ?_ - 1 123 32 > 21 - 131.

Bayesian Decision Theory - 10

(4)

Since (1) implies that [1(a1(xl,...,xk),0-1(a2(x1,...,xk),t)] = [(b1-b2)t-bitc1 +b2tc2] and

[1(a2(xl,...,xk),t)-1(a3(x1,...,xk),0] = [(b2+b3)(t-te2)], it follows immediately from b1, (b1 -b2) > 0

that the condition of monotone loss is also satisfied for linear loss at each stage of sampling k

(15k5.n).

Optimal Rules for the Sequential Four-Action Mastery Problem

In this section, optimal cutting scores will be derived for the sequential four-action mastery

problem. Doing so, first the posterior expected loss for the fixed-length three-action mastery

problem will be minimized, given X1 = x1,...,Xk = xk (1 5 k n). In other words, for the fixed-

length three-action mastery problem it will be determined which of the three actions

ai(x 1,...,xk), a2(x1,...,xk), or a3(x1,...,xk) yields the smallest posterior expected loss, given an

observed item response vector (xl,...,xk). Next, optimal rules for the sequential four-action

mastery problem are computed at each stage of sampling k (1 k 5 n) by comparing this

smallest posterior expected with the posterior expected loss associated with action a4(x1,...,xk)

(i.e., continuing sampling).

Minimal Posterior Expected Loss for the Fixed-Length Mastery Problem

In minimizing the posterior expected loss for the fixed-length three-action mastery problem,

first the situation with linear loss will be elaborated. Next, the case of threshold loss will be

examined. It will be assumed that the empirical data fits a beta distribution, which is used to

represent prior knowledge about T.

13
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Appropriate Mastery Classification Decision with Linear Loss

It can easily be verified from (1) that the decision rule minimizing the posterior expected loss

in the case of linear loss, given X1 = x 1,...,Xk = xk (1 5 k n), is to declare mastery,

a3(xi,...,xk), when a student's number-correct score sk (0 5 sk 5 k) is such that

E[b3(t,2-T)+ke I ski 5 E[b2(T4,2)+ke I ski. (5)

Since (b2+b3) > 0, this is equivalent to declare mastery if

E(T I sk) tcz, (6)

where E(T I sk) denotes the posterior expectation of T, given the observed number-correct

score sic

If the inequality in (6) does not hold, a decision rule minimizing the posterior expected

loss, given X1 = xi,...,Xk = xk (1 k n), is to declare partial mastery, a2(x1,...,xk), if it holds

for number-correct score sk that

E[b2(T4,2)+ke I sk] 5 E[b (T-t,1)+ke I ski, (7)

and to declare nonmastery (al (x1,...,xk)) to him/her otherwise. Since (b1 -b2) > 0, it follows that

partial mastery is declared if

E(T I sk) (b t,i-b2l,2)/(bi-b2), (8)

and nonmastery is declared otherwise.

Putting 1(a2(xi,...,xk),t) and 1(a3(x ,...,xk),t) equal to each other, it appears that the t-

coordinate of the intersection of both loss lines, ta, is equal to the right-hand side of (6).

Similarly, the t-coordinate of the intersection of 1(a1(x1,...,xk),t) and 1(a2(xi ..... xk),t), say tI2, is

equal to the right-hand side of (8).

Hence, with linear loss, the decision procedure for the fixed-length three-action

mastery problem, given X1 = x 1,...,Xk = xk (1 5 k n), can now be stated as follows: Mastery

is declared to a student (a3(x1,...,xk)) if his/her posterior expectation of T is equal to or larger

14
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than tc2. If his/her posterior expectation of T is smaller than tc2, however, the following two

situations can be distinguished: First, his/her posterior expectation of T is smaller than tc2 but

equal to or larger than t12. In this case, partial mastery is declared (a2(xl,...,xk)). Second, not

only his/her posterior expectation of T is smaller than tc2 but also smaller than t12. In this case,

nonmastery is declared (al(xi,...,xk)).

In the present paper, prior knowledge about T will be estimated by using empirical

data from other students of the group to which the individual student belongs (i.e., empirical

Bayes approach). Here, it will be assumed that the empirical data fits a beta distribution,

B(a,(3). Its flexible form nearly always makes an approximation of prior beliefs possible

(Novick & Jackson, 1974, p. 107-113). In the empirical example, it will be examined if this

assumption holds against the data.

Keats and Lord (1962) have shown that simple moment estimators of a and 13, based

upon the mean t and the KR-21 reliability p of the observed number-correct score from other

students of the group to which the student belongs, are given as

6c=(-1+1/p)g,

11=d+m/pm (9)

where m denotes the number of items in the test from which p and g are computed.

It follows from an application of Bayes' theorem that under the assumed binomial

model from (2), the posterior distribution of T will again be a member of the beta family (the

conjugacy property, see e.g., Lehmann, 1959). In fact, if the prior distribution is B(a,(3) and

student's observed number-correct score is sk from a test of length k (1 k n), then the

posterior distribution is B(a+sk,(3+k-sk).

Using the fact that the expectation of a beta distribution B(a,(3) is equal to a/(a+(3), it

follows that the posterior expectation of T can be written as (a+sk)/(a+sk431-k-sk), or,

equivalently,

E(T I sk) = (a+sk)/(a+13+k). (10)

Hence, with linear loss and a beta distribution representing prior knowledge about T,

the optimal number of items for the fixed-length three-action mastery problem, given X1 =

15



Bayesian Decision Theory - 13

x1,...,Xk = xk (1 _5 k <_ n), can be computed by comparing the right-hand side of (10) with the

right-hand sides of (6) and (8).

As an aside, it may be noted that if no information is available from the group to

which the individual student belongs, the parameters of the beta prior can be specified as a =

p = 1. In that case, the prior distribution represents a uniform distribution on the standard

interval from zero to one; hence, prior true level of functioning can take on all values between

0 and 1 with equal probability.

It is important to notice that if no empirical data is available for estimating prior true

level of functioning, we are no longer dealing with an empirical Bayesian approach. Prior

knowledge about T is estimated in this case by subjective assessment (e.g., Lewis & Sheehan,

1990).

Appropriate Mastery Classification Decision with Threshold Loss

In the case of threshold loss, it can be seen from Table 1 that a decision rule minimizing the

posterior expected loss, given XI = xi,...,Xk = Xk (1 5 k n), is to declare mastery

(a3(xl,...,xk)) when a student's number-correct score sk (0 5 sk .5 k) is such that

131P(T < tc1
I

sk) -1-13213(to < T < tc2 I SO ke 5

121P(T 5 to I sk) + 123P(T tc2 I
sk) ke.

Rearranging terms, it can easily be verified from (11) that mastery is declared if

(131-121-132)P(r .?2 tc1
I

Sk) (123 +132)P(T > tc2 I
Sk)-131+121 0. (12)

If the inequality in (12) does not hold, a decision rule minimizing the posterior

expected loss, given X1 = x 1,...,Xk = Xk, is to declare partial mastery, a2(xl,...,xk), when a

student's number-correct score sk (0 5 sk k) is such that

121P(T tc. I Sk) 123P(r tc2 I sk) ke

112P(tc1 < T < tc2 I Sk) 113P(r tc2 I sk) ke, (13)

and to declare nonmastery (ai(xl,...,xk)) otherwise. It follows that partial mastery is declared if
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(14)

and nonmastery is declared otherwise.

The cumulative posterior distributions P(T to I sk) and P(T ta I SO in (12) and

(14) of the beta prior have been extensively tabulated (e.g., Pearson, 1930). Normal

approximations are also available (Johnson & Kotz, 1970, sect. 2.4.6). In general, if T has a

beta distribution with parameters (a4) where neither a nor 0 is small (say, not < 10), then this

distribution can be approximated by a normal distribution with mean a/(a+(3) and variance

4/Ra-143)2(a-0+1g

Minimizing Posterior Expected Loss for the Sequential Mastery Problem

Since the action a4(xl,...,x) (i.e., continuing sampling) is not available at the final stage of

sampling, n, the action al(xi,...,x), a2(xl,...,xn), or a3(xl,...,xn) with the smallest posterior

expected loss also represents the optimal sequential rule at the final stage of sampling.

Optimal sequential rules at the other stages of sampling k (i.e., 1 5 k < n) are computed by

comparing the smallest posterior expected loss of the three actions al(xl,...,xk), a2(xl,...,xk),

and a3(xl,...,xk) with the posterior expected loss of action a4(xl,...,xk). As noted before, the

posterior expected loss associated with continuing sampling is determined by considering all

possible future decision outcomes (i.e., backward induction). Hence, the following backward

induction computational scheme can be used for determining the optimal sequential rules for

our four-action mastery problem:

Suppose that X1 = x1,...,Xn = xn has been observed at the final stage of sampling, n.

Then, it is first computed which of the three actions al(xl,...,xn), a2(xl,...,xn), and a3(xl,...,xn)

yields the smallest posterior expected loss at the final stage of sampling. Let this optimal

action be denoted as cpn(xl,...,xn) and its associated minimum posterior expected loss as

Vn(x ,...,xn).

Generally, the action al(xl,...,xk), a2(xl,...,xk), or a3(xl,...,xk) yielding the smallest

posterior expected loss, given X1 = x1,...,Xk = xk (1 k 5 n), is denoted as yk(x1,...,xk) and its

associated minimum posterior expected loss as Vk(xi,...,xk). If no observation has been taken

yet, 9,3(x°) and Vo(xo) denote the action a1(x0), a2(x0), or a3(x0) which yields the smallest prior

expected loss and its associated minimum prior expected loss, respectively.

17
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Next, cp_1(xl,...,x_1) and V_1(xl,...,xn_1) are computed at stage (n-1) of sampling. At

this stage of sampling, however, we must also take into account the possible action of

continuing sampling, a4(x1,...,xk). Hence, V_1(x1,...,x_1) at stage (n-1) must be compared with

the posterior expected loss associated with continuing sampling. At stage (n-1) of sampling,

the posterior expected loss associated with taking one more observation, E[V(x1,...,x.1,Xn)

X, = = x_,], is computed as follows:

E[V(xl,...,xn_1,X) I X, = xi,...,X_, = xn_l] =

xi
2LVn(xl,...,xn)*P(Xn I X1 = xl,...,X_, = xr,_,),

xn=o
(15)

where P(X I X, = x1,...,Xn_1 = xn_1) denotes the conditional distribution of Xn, given the

observed item response vector (x1,...,xn_1). This is also called the posterior predictive

distribution of Xn at stage (n-1) of sampling. In the next section it will be indicated how,

generally, the posterior predictive distribution of Xk (1 k 5 n), given the observed item

response vector (x1,...,x), can be computed. Note that (15) averages the posterior expected

loss associated with each of the possible future decison outcomes relative to the probability of

observing those outcomes (Lewis & Sheehan, 1990).

Following Lewis and Sheehan (1990), the minimum conditional Bayes risk at stage (n-

1) of sampling, given X, = xl,...,Xn., = xn_l; is defined as:

Rn_1(x1,...,x,,_1) = min{ Vn_1(x,,...,x_,), E[Vn(xl,...,x_,,Xn) I X, = = xn_i] }.(16)

Let the optimal rule for the sequential four-action mastery problem at stage (k-1) (1 k n),

given X, = xl,9Xk-I = xk_,, be defined as clk_1(xl,...,xk_1), where do(x0) denotes the decision

whether or not to take at least one observation. Then, cln_1(x1,...,x_1) can be obtained by

comparing Vn_1(x1,...,xn_1) and E[Vn(x,,...,xn_,,Xn) I X, = x1,..., Xn_i = Xn.1] with each other.

Hence, it follows:

dn_1(x1,...,xn_1) =
(17)

19n-1(X1 ..... Xn_i) if Rn_1(xl,...,xn_1).vn_1((xl,...,x.1)

continue sampling if Rn.1(X1,...,Xn_1). E[Vn((xI,...,Xn_i,Xii) I X1 = X1,...,Xn_1 = Xn_1].

18
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In the case of equality between Vn_1(x1,...,x.1) and E[Vn(x1,...,xn.1,Xn) I X1 = 1,...,Xn.i = Xn.i]

it does not matter whether or not the decision-maker takes one more observation.

Let the minimum conditional Bayes risk at stage n of sampling, given X1 = x1,...,Xn =

xn, be defined as Vn(xi,...,xn). Then, generally, the minimum conditional Bayes risk at stage

(k-1), given X1 = x 1,,Xk-i = xk.,, is computed inductively as a function of the minimum

conditional Bayes risk at stage k (1 5 k n) as follows:

= min{Vk_1(x1,...,xk.,), E[Rk(xi,...,xk_i,Xk) I X1 = x1,...,Xk.1 = (18)

where the posterior expected loss associated with taking one more observation at stage (k-1)

of sampling, E[Rk(xl,...,xk_I,Xk) I X1 = xl,...,Xk_, = xk_i], is computed as follows (1 k n):

E[Rk(xl,...,xk_i,Xk) I Xi = x1,...,Xk_i = Xk. ] =

I

IRk (Xi ,...,Xk )*P(Xk I X1 = Xi,...,Xk_i = Xk.1).

xk =0

(19)

Analogous to the computation at stage (n-1), Tn_2(xi>.,xn-2) and Vn_2(x1,,xn-2) are

now computed at stage (n-2) of sampling. Next, using (18)-(19), E[Rn.1(xl,...,xn_2,Xn_1) I X1 =

x1,...,Xn.2 = X_n_2] and Rn_2(X1,...,Xn.2) are computed at stage (n-2). Finally, analogous to the

computation of dn_1(x1,...,xn_1), dn_2(x1,...,xn_2) is computed at stage (n-2) by comparing

Vn-2(X I 9' ,xn-2) and E[Rn_1(xl,...,xn..2,Xn_1) I XI = x1,...,Xn_2 = xn.2] with each other. Following

the same computational backward scheme, dn_3(xl,...,xn_3),...,d0(x0) are computed.

Computation of Posterior Predictive Distribution

In this section, it will be indicated how the posterior predictive distribution P(Xk I X1 =

x 1,,X k-I = Xk- I ) in (19) can be computed (1 k 5 n). From Bayes' theorem, it follows that:

P(Xk I Xi = = xk-i) = P(X1 = x1,..,Xk = xk)/P(Xi = X1 .....Xk_ = Xk.i). (20)

Since the binomial model was adopted for the psychometric model involved, it follows from

(2) that
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P(X, = x1,...,xk = XkIt) = tsk (1-0"k . (21)

Furthermore, the p.d.f. of T was assumed to be distributed according to a beta distribution

B(a,[3) with parameters a and 13 (a, 13 > 0) in the standard interval [0,1]:

p(t) = [r(a+13)ta-1(1-00-1]/[f(a)1-(13)], (22)

where r is the usual gamma function.

Multiplying (21) and (22) and integrating out t yields the unconditional distribution of

(X1,...,Xk):

P(X, = x1,...,Xk = Xk) =

[r(a+13)I-(a+sk)I-(13+k-sk)]/[r(a)r(13)r(a+(3+k)].

Similarly, the unconditional distribution of (X,,...,Xk.,) is equal to:

P(X, = xl,...,Xk_, = Xk -1) =

(23)

[I-(a+13)r(a+sk.,)F(13+k-l-sk.,)]/[lia)r([3)1-(al-(3+k-1)]. (24)

It now follows from (20), (23), and (24) that the posterior predictive distribution of Xk, given

the observed item response vector (x1,...,xk.1), can be written as:

P(Xk I X, = = Xk -1) =

[1-(a+sk)r(( 3+k-sk)r(a+13+k-1)]/[r(a+sk.i)r(R+k- -sk_,T(a+ii+k)]. (25)

Since sk = sk_, and sk = sk_1+1 for xk = 0 and 1, respectively, and using the well-known

identity r(j +i) =Ai), it finally follows from (25) that:

{(13sk__, -1-k-1)/(a+(3+k-1) ifxk =0
(a+sk_,)/(a+(3+k 1) ifxk = 1.

20

(26)



Bayesian Decision Theory - 18

An Empirical Example

The procedures for computing the optimal sequential number of items were applied to a

computerized four-action mastery test for concept-learning in medicine for freshmen.

Concept-learning is the process in which subjects learn to categorize objects, processes or

events, for instance, formation of diagnostic skills in medicine or psychology (see Tennyson

and Cocchiarella, 1986, for a complete review of the theory of concept-learning).

Information from the group to which the student belongs was available in the form of

data from a pretest for a sample of 76 freshmen in a medical program. The pretest consisted of

30 multiple-choice items and had possible test scores ranging from 0-30. The mean and KR-

21 reliability coefficient were estimated as 16 and 0.81, respectively. Hence, it follows from

(9) that a and 13 were estimated as 3.75 and 3.28, respectively.

The fit of the pretest data to the binomial model with the assumed beta distribution for

prior true level of functioning was checked by comparing the theoretical score distribution

with the empirical observed score distribution. Keats and Lord (1962) have shown that the

theoretical score distribution is the negative hypergeometric distribution. The results of the

chi-square test showed a satisfactory fit at a significance level of 0.05.

The instructors of the program considered students as having mastered the present

concept successfully if they had mastered at least 60% of the total number of items covering

the subject matter of that concept (i.e., true mastery). Therefore, tc2 was fixed at 0.6.

Furthermore, nonmastery was declared if students had mastered less than 50% of the total

number of items covering the subject matter of the present concept (i.e., true nonmastery).

Therefore, tc1 was fixed at 0.5.

Finally, the constant cost for administering one random item was assumed to be rather

small. Therefore, the value of e was set equal to 0.01.

Results with Linear Loss and a Beta Prior for T

First, the case of linear loss and a beta distribution for prior knowledge about T is considered.

Taking into account the requirements discussed earlier, the loss parameters were empirically

assessed by the instructors of the program yielding the following result: b1 = 8, b2 = 3, and b3

= 1. For these values of the loss parameters, the right-hand side of (8) turned out to be equal to

0.44.
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The appropriate action (i.e., nonmastery, partial mastery, mastery, or continue

sampling) is depicted in Table 2 as a closed interval for a maximum of 30 items (i.e., n = 30)

at each stage of sampling k (0 k S n) for different number correct score sk (0 sk k).

Table 2 has been constructed by applying the following backward induction

computational scheme. First, the appropriate action and its associated minimum posterior

expected loss at the final stage of sampling have been determined; that is, 930(x 1,...,x30) and

V30(x ,..,x30), have been computed for 530 = 0,...,30. More specifically, nonmastery was

declared for those values of 530 for which E(T I s30) 0.44, partial mastery was declared for

those values of s30 for which 0.44 < E(T I s30) < 0.6, and mastery was declared for those values

of 530 for which E(T I S30) 0.6. Note that it can be inferred from Table 2 that the cutting

scores sci(30) and sc2(30) are equal to 12 and 19, respectively.

Similarly, the appropriate action nonmastery, partial mastery, or mastery and its

associated minimum posterior expected loss have been computed after 29 items for s29 =

0,,29 (i.e., 929(x ,..,X29) and V29(x1,..,X29)). Next, using (18), (19), (26), and the minimum

posterior expected losses calculated at the final stage of sampling, the posterior expected loss

associated with taking one more observation at stage 29 of sampling is computed for s29 =

0,...,29 (i.e., E[V30(xl,...,x29,X30) I X1 = x1,...,X29 = x29]). These values are compared to the

minimum posterior expected losses after stopping after 29 items in order to compute the

conditional Bayes risk at stage 29 of sampling. Using (17), the appropriate action nonmastery,

partial mastery, mastery, or continue sampling is determined at stage 29. Similarly, the

appropriate action is determined at stage 28 until stage 0 of sampling. A computer program

called LINEAR was developed to determine the appropriate action at each stage of sampling.

A copy of the program LINEAR is available from the author upon request.

As can be seen from Table 2, regardless of the observed number-correct score sk, the

decision-maker takes at least five observations. Furthermore, Table 2 shows that a student

whose posterior expectation of T is in the region of the intersection of the loss lines

1(al(xl,...,xk),t) and 1(a2(x i,...,xk),t) or in the intersection of the loss lines 1(a2(xl,...,xk),t) and

1(a3(x1,...,xk),t), it is hard to classify him /her as a nonmaster, partial master, or master. Hence,

longer tests are needed for such students. On the other side, shorter tests can be provided for

students whose posterior expectation of T is not in the region of the intersection of these loss

lines.
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Table 2. Appropriate action calculated by stage of sampling and number-correct in case of

linear loss.

Stage of sampling Appropriate Action by Number-Correct
Nonmastery Continue Partial

Mastery
Continue Mastery

0
1

2

3

4

0
[0,1]
[0,2]
[0,3]
[0,4]

5 [0,4] 5
6 0 [1,5] 6
7 0 [1,5] [6,7]
8 0 [1,6] [7,8]
9 [0,1] [2,7] [9,0]
10 [0,1] [2,7] [8,10]
11 [0,2] [3,8] [9,11]
12 [0,2] [3,8] [9,12]
13 [0,3] [4,6] 7 [8,9] [10,13]
14 [0,3] [4,9] [10,14]
15 [0,4] [5,7] 8 [9,10] [11,15]
16 [0,4] [5,7] [8,9] [10,11] [12,16]
17 [0,5] [6,8] 9 [10,11] [12,17]
18 [0,5] [6,8] [9,10] [11,12] [13,18]
19 [0,6] [7,9] 10 [11,12] [13,19]
20 [0,6] [7,9] [10,11] [12,13] [14,20]
21 [0,7] [8,9] [10,12] 13 [14,22]
22 [0,7] [8,10] [11,12] [13,14] [15,22]
23 [0,8] [9,10] [11,13] [14,15] [16,23]
24 [0,8] [9,11] [12,14] 15 [16,24]
25 [0,9] [10,11] [12,14] [15,16] [17,25]
26 [0,9] [10,11] [12,15] 16 [17,26]
27 [0,10] [11,12] [13,15] [16,17] [18,27]
28 [0,10] [11,12] [13,16] 17 [18,28]
29 [0,11] 12 [13,17] 18 [19,29]
30 [0,12] [13,18] [19,30]

Finally, it can be inferred from Table 2 that with increasing number of items being

administered, the chances of being classified as a nonmaster, partial master, or master

increases.

Let us assume that the sequential decision procedure starts with administering one

ramdomly selected item and stops after declaring nonmastery, partial mastery, or mastery.

Hence, the sequential decision procedure proceeds only after the continue sampling decision.

Then, it can easily be inferred from Table 2 that the optimal sequential rule can be depicted in
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Table 3 at each stage of sampling k (1 5_ k 30) for different number-correct score sk (0 sk 5_

k) as follows:

Table 3. Optimal sequential rule calculated by stage of sampling and number-correct in case

of linear loss.

Stage of sampling Optimal Sequential Rule by Number-Correct
Nonmastery Continue Partial

Mastery
Continue Mastery

1

2
3

4

[0,1]
[0,2]
[0,3]
[0,4]

5 [0,4] 5
6 0 [1,5]
7 [1,5] 6
8 [1,6]
9 1 [2,7]
10 [2,7] 8
11 2 [3,8]
12 [3,8] 9
13 3 [4,6] 7 [8,9]
14 [4,9] 10
15 4 [5,7] 8 [9,10]
16 [5,7] [8,9] [10,11]
17 5 [6,8] [10,11] 12
18 [6,8] [9,10] [11,12]
19 6 [7,9] [11,12] 13
20 [7,9] [10,11] [12,13]
21 7 [8,9] 10 or 12 13 14
22 [8,10] [13,14]
23 8 [9,10] 11 or 13 [14,15]
24 [9,11] 14 15 16
25 9 [10,11] 12 [15,16]
26 [10,11] 12 or 15 16 17
27 10 [11,12] [16,17]
28 [11,12] 13 or 16 17 18
29 11 12 13 or 17 18
30 12 13 or 18 19

Note that not all possible number-correct scores sk are necessarily present at each stage

of sampling k, because it is assumed in Table 3 that the optimal sequential rule stops after

declaring nonmastery, partial mastery, or mastery. For instance, the number-correct score s6

SINN COIF Y AVARLAIBIS
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can only take the values 0 until 5, and thus, not the value 6. This is because mastery was

declared for s5 = 5, implying the optimal sequential rule stops for this value of s5.

Results with Threshold Loss and a Beta Prior for T

Next, the case of threshold loss and a beta prior for T is considered. Taking into account the

requirements discussed earlier and assuming equal losses for the correct decisions In, 122, and

133, the losses from Table I were empirically assessed by the instructors of the program

yielding the following result:

Table 4. Threshold loss table at stage k (1 k n) of sampling for empirical example.

True Level

Action
T 5 t,, tc, < T < tc2 T tci

al(xl, 9 Xk) ke 4 + ke 7 + ke

a2(xl, ., xk) I + ke ke 2 + ke

a3(x 1, ..., xk) 3 + ke 1 + ke ke

Note that 123 was assessed larger than 121 for this specific empirical example. Using the

numerical values for the loss parameters (i,j = 1,2,3) of Table 4, the appropriate action

nonmastery, partial mastery, mastery, or continue sampling is depicted in Table 5 for a

maximum of 30 items at each stage of sampling k (0 k n) for different number correct

score sk (0 5_ sk k) as a closed interval again.

Table 5 was constructed by using the same backward induction computational scheme

as in the construction of Table 2. Doing so, the appropriate action at each stage of sampling k

(0 k n) for the fixed-length three-action mastery problem (i.e., (pk(x1,...,xk)) was

determined by examining if the inequalities in (12) and (14) were satisfied. More specifically,

nonmastery was declared for those values of sk (0 <_ sk k) for which the left-hand sides of

(14) were equal to or smaller than zero, partial mastery was declared for those values of sk for

which the left-hand sides of (14) and (12) were larger and smaller than zero, respectively, and

mastery was declared for those values of sk for which the left-hand sides of (12) were equal to

or larger than zero. Using numerical procedures for calculating the cumulative posterior

distributions P(T tc, I sk) and P(T ?_ ta I sk), a computer program called THRESHOLD was
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developed to determine the appropriate action. A copy of the program THRESHOLD is

available from the author upon request.

Table 5. Appropriate action calculated by stage of sampling and number-correct in case of

linear loss.

Stage of sampling Appropriate Action by Number-Correct
Nonmastery Continue Partial

Mastery
Continue Mastery

0 0
1 [0,1]
2 [0,2]
3 [0,3]
4 [0,4]
5 [0,5]
6 [0,5] 6
7 [0,6] 7
8 [0,7] 8
9 0 [1,7] [8,9]
10 0 [1,8] [9,10]
11 0 [1,8] [9,11]
12 [0,1] [2,9] [10,12]
13 [0,1] [2,10] [11,13]
14 [0,2] [3,10] [11,14]
15 [0,2] [3,11] [12,15]
16 [0,3] [4,11] [12,16]
17 [0,3] [4,12] [13,17]
18 [0,4] [5,12] [13,18]
19 [0,4] [5,13] [14,19]
20 [0,5] [6,13] [14,20]
21 [0,5] [6,14] [15,21]
22 [0,6] [7,14] [15,22]
23 [0,6] [7,15] [16,23]
24 [0,7] [8,11] 12 [13,15] [16,24]
25 [0,8] [9,11] [12,13] [14,16] [17,25]
26 [0,8] [9,11] [12,13] [14,16] [17,26]
27 [0,9] [10,12] [13,14] [15,17] [18,27]
28 [0,10] [11,12] [13,15] [16,17] [18,28]
29 [0,11] 12 [13,16] 17 [18,29]
30 [0,12] [13,17] [18,30]

As can be seen from Table 5, analogous to the situation with linear loss, the decision-

maker takes at least five observations. Furthermore, Table 5 shows that continue sampling

decisions in the region between the actions partial mastery and mastery are taken for the first

time after 23 items have been administered. Continue sampling decisions in the region
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between the actions nonmastery and partial mastery, however, are taken already after 8 items

have been administered.

A possible explanation for this finding might be that the losses associated with taking

false nonmastery decisions are rather large relative to the losses associated with taking false

partial mastery decisions (i.e., 4 and 7 relative to 1 and 2), whereas the losses associated with

taking false partial mastery and mastery decisions (i.e., 1 and 2 relative to 3 and 1) do not

Table 6. Optimal sequential rule calculated by stage of sampling and number-correct in case

of threshold loss.

Stage of sampling Optimal Sequential Rule by Number-Correct
Nonmastery Continue Partial

Mastery
Continue Mastery

[0,1]
2 [0,2]
3 [0,3]
4 [0,4]
5 [0,5]
6 [0,5] 6
7 [0,6]
8 [0,7]
9 0 [1,7] 8
10 [1,8]
11 [1,8] 9
12 1 [2,9]
13 [2,10]
14 2 [3,10] 11

15 [3,11]
16 3 [4,11] 12
17 [4,12]
18 4 [5,12] 13

19 [5,13]
20 5 [6,13] 14
21 [6,14]
22 6 [7,14] 15
23 [7,15]
24 7 [8,11] 12 [13,15] 16
25 8 [9,11] [12,13] [14,16]
26 [9,11] 12 [14,16] 17
27 9 [10,12] 14 [15,17]
28 10 [11,12] 13 or 15 [16,17] 18
29 11 12 13 or 16 17 18
30 12 13 or 17 18
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differ that much. Consequently, it seems better to continue sampling in the region between the

actions nonmastery and partial mastery in order to avoid relatively large losses associated with

taking false decisions.

Finally, analogous to the construction of Table 3 from Table 2, the optimal sequential

rule can be inferred from Table 5 at each stage of sampling k (1 k 5 30) and for different

number-correct score sk (0 5_ sk k) again. The result is depicted in Table 6.

Conclusions and Some New Lines of Research

In this paper, using the framework of empirical Bayesian decision theory, optimal sequential

rules for the four-action mastery problem (nonmastery, partial mastery, mastery, and

continuing sampling) were derived. The procedures were demonstrated by an empirical

example for concept learning in medicine. Both for threshold and linear loss, optimal

sequential rules were derived with prior knowledge assumed to be represented by a beta

distribution.

The results indicated that, regardless of the observed number-correct score, the

decision-maker takes at least five observations for both loss structures. Furthermore, it turned

out that the chances of being classified as a nonmaster, partial master, or master increased if

the number of items administered increased. This result was in accordance with our

expectations.

There are a few new lines of research arising from the application of (empirical)

Bayesian decision theory to sequential mastery testing. The first is the extension of

determining the optimal sequential decision rules to the case that, in addition to the actions

nonmastery, partial mastery, mastery, and administer randomly one more item, still another

action is open to the decision-maker (e.g., mastery with distinction). Following the same line

of reasoning as in the situation where there are four actions open to the decision-maker, the

optimal sequential rules can easily be generalized to this sequential five-action mastery

problem.

Two, it might be assumed that guessing and carelessness have to be taken into

account. Morgan (1979) has developed a model with corrections for guessing and carelessness

within a Bayesian decision-theoretic framework (see also van den Brink & Koele, 1980). The

results of a computer simulation of the model indicate that guessing and carelessness may
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markedly affect the determination of cutting scores, and hence the accuracy of the sequential

decision procedures.

Third, it might also be assumed that no prior knowledge about true level of functioning

is available. In these circumstances, the maximin procedure might be an appropriate

framework (e.g., Huynh, 1980; Veldhuyzen, 1982), which requires no prior distribution

regarding true level of functioning. As an aside, it might be noted that a maximin rule can be

conceived as a rule that is based on minimization of posterior expected loss as well, but under

the restriction that the prior is the least favorable of the class of priors (e.g., Ferguson, 1967,

Sect. 1.6).

The last line is research into other prior distributions, psychometric models (e.g.,

standard-normal model), and loss structures than the ones assumed here. For example, the

normal ogive function (Novick & Lindley, 1979) which takes loss to be a nonlinearly function

of the true level of functioning, might be a realistic representation of the losses actually

incurred. This loss function does not only have realistic properties but also can be combined

nicely with a standard normal distribution for the psychometric model.
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